Course Type	Course Code	Name of Course	L	Т	P	Credit
DE	NECD504	Microwave Photonics	3	0	0	3

Course Objective

The objective of the course is to provide microwave and optical technologies to overcome the limitation of microwave technology

Learning Outcomes

At the end of the course, the student must be able to

- Explore the close interactions of lightwave and microwave and understand the physical principles of the hybrid field.
- Learn and investigate the microwave photonics principles through a number of cutting-edge system applications ranging from high-speed fibre-wireless links to microwave photonic signal processing.

Module No.	Topics to be Covered	Lecture Hours	Learning Outcome		
1	Introduction to Microwave Photonics: An introductory overview, Advantages of Microwave photonics over conventional Microwave techniques. Photonic devices and its application at high frequency, Limitation of direct modulation at high frequency, Microwave photonic detectors	12	Acquire an understanding of microwave Photonics		
2		12	Understand about High speed		
2	Microwave photonic components: High speed Modulator. Electro-optic modulators: Biasing and transfer characteristic of Mach-Zehnder Modulator (MZM), Electro-absorption modulators, Fiber Bragg Grating filter, Semiconductor optical amplifier.	12	Understand about High speed Modulator. Electro-optic modulators, Biasing and transfer characteristic of Mach-Zehnder Modulator (MZM.		
3	Microwave photonic systems: Introduction to Radio over fiber, Photonic microwave signal generation and processing, Optoelectronic microwave oscillator, Microwave photonic mixer, Microwave photonic filter, Terahertz signal generation and detection.		Understand the working principle of radio over fiber, Photonic microwave signal generation and processing, filter.		
4	Microwave photonics in instrumentation and measurement: Photonic approach of microwave frequency measurement.	06	Acquire an understanding of photonic approach of microwave frequency measurement.		
	Total	42			

Textbook:

1. Microwave Photonics: Devices and Applications by Stavros Iezekiel John Wiley & Sons, Ltd 2009.

Reference Books:

- Optoelectronics and Photonics, O S Kasap (Pearson publication) Semiconductor Optical Amplifiers, 2013
- 2. Semiconductor optical amplifiers, second edition by N.K Dutta, Q. Wang January 2013